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Abstract Inspired by previous work on information theoretical optimization problems, the
basics of an axiomatic theory of certain special two-person zero-sum games is developed.
One of the players, “Observer”, is imagined to have a “mind”, the other, “Nature”, not. These
ideas lead to un-symmetric modeling as the two players are treated quite differently. Basic
concavity- and convexity results as well as a general minimax theorem are derived from the
axioms.

Keywords Entropy · Redundancy · Divergence · Complexity · Two-person zero-sum
games · MaxEnt

1 Introduction

Modern information theory with its precisely defined notions to worry about was founded
by Shannon in 1948, cf. [21]. The theory led in itself to interesting optimization problems,
typically centred around the concept of capacity. Relatively soon after, it was realized that
information theoretical reasoning also leads to principles of scientific inference in other dis-
ciplines. Especially we point to Jaynes work [14] in statistical physics (see also [15]), and to
Kullback’s work [17] in statistics (see also [5]).

Central to Shannons theory is his famous formula for the entropy of a discrete distribution
P , say of finite support, which, in natural units, is expressed in terms of the point probabilities
pi by

H(P) =
n∑

i=1

pi ln
1

pi
. (1)
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For Kullback’s applications to statistics it was essential to broaden the concept of entropy
to a concept involving two distributions. This led to a new quantity, divergence, which for
discrete distributions is defined by

D(P, Q) =
n∑

i=1

pi ln
pi

qi
. (2)

The relation to entropy becomes clear if one takes Q to be a uniform distribution. For this
reason, divergence is also called relative entropy or cross entropy. The fundamental inequal-
ity of information theory, also called the information inequality, states that D(P, Q) ≥ 0
with equality if and only if P = Q, cf. [3,24].

Jaynes argues that if P is a set of probability distributions which models our knowledge in
a given situation, it is sensible to infer that distribution in P which has maximal entropy. This
is Jaynes maximum entropy principle, MaxEnt. Kullback suggests that if Q—typically, not a
distribution in the model P—represents prior knowledge, one should infer that distribution
P ∈ P which minimizes D(P, Q). This is Kullbacks minimum information discrimination
principle, also referred to as MinXent, the principle of minimum cross entropy.

The good sense of the principles pointed to has since been discussed thoroughly in many
works. Here we refer to the more specialized references [8,12,23,25] where a game theoret-
ical approach is considered to lie behind MaxEnt as well as MinXent. A principle of game
theoretical equilibrium (GTE)—the principle to investigate conditions for equilibrium and
to search for optimal strategies for both players in the games considered—is promoted as a
key principle in the cited works. The quantities studied in these references are all based on
special features of probability distributions.

In [4,7,26,27] it became clear that for key conclusions to hold, one need not stick to
habitual concepts of Shannon theory, such as (1) and (2). Still, the modeling was basically
probabilistic or at least measure theoretic.

Here, we shall free ourselves from the probabilistic basis and allow an abstract set-up, tied
together by four axioms. The first two contain the basic algebraic structure. It is shown that
they suffice for the derivation of concavity- and convexity properties, parallel to well-known
properties of information theory. The two last axioms are topological and of a more technical
nature. They aim at enabling abstract existence results related to optimization.

The results as presented here are intended as an appetizer. The full justification of the
abstract approach lies in the richness of applications it facilitates. A comprehensive and sys-
tematic study of the possibilities will be taken up subsequently. On the one part, this will
connect to problems and results easily recognizable from information theory and, on the
other, to different areas within optimization and duality theory.

2 Basic axioms of information triples

We shall take complexity (�), entropy (H) and redundancy (D) as key objects to work with
and axiomatize useful properties pertaining to triples I = (�, H, D), here referred to as
information triples.

Consider two abstract sets X and Y , conceived as strategy sets for, respectively, Player I—
a female say, representing “Nature”—who “holds the truth” and then Player II who “seeks
the truth” and may be taken to be male, acting as Observer. Player I chooses a strategy from
X , Player II one from Y .
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The terminology is chosen so as to arise inspiring associations and to ease the appreciation
of concepts involved, and cannot be taken as an argument in favour of existence of “absolute
truth”—if anything, truth rather reflects the state of Observer regarding beliefs, knowledge
and other features related to a person with a mind. Regarding the other player, our modeling
views Nature as a “person” without a mind.

Besides the two strategy sets, we have also given a map x � x̂ of X into Y , the response.
Usually, the response is given in some natural way and we have decided not to reserve a
special letter as a label for it. Intuitively, when you see things from the point of view of
Nature, you work with x and when you take the point of view of Observer, you rather work
with x̂ or some y ∈ Y . We stress that though the response is often injective, it need not be so.
If x1 and x2 have the same response (x̂1 = x̂2), we say that the two strategies are equivalent
and write x1 ≡ x2. When y = x̂ , we express this by saying that y is adapted to x .

More precisely, an information triple I = (�, H, D) related to the given strategy sets and
the given response, is a set of three maps with values in ] − ∞,∞]: � defined on X × Y ,
referred to as complexity, H defined on X , referred to as entropy, and D defined on X × Y ,
referred to as redundancy. Often, especially if the strategy sets are equal and the identity is
taken as response, redundancy is also called divergence. The value �(x, y) is interpreted as
the complexity, seen from the point of view of Observer, when he is using the strategy y and
the truth (chosen strategy by Nature) is x .

As guiding principle for the first axiom, we hold that entropy is minimal complexity,
redundancy represents actual complexity as related to minimal complexity and, furthermore,
Observer can always react optimally to any strategy chosen by Nature—if only her choice is
known to Observer.

Axiom 1 (linking, fundamental inequality) For any (x, y) ∈ X × Y ,

�(x, y) = H(x) + D(x, y), (3)

D(x, y) ≥ 0 and (4)

D(x, y) = 0 ⇔ y = x̂ . (5)

The identity (3) is the linking identity and, taken together with (5), (4) is the fundamental
inequality. As we see, entropy is indeed minimal complexity: H(x) = miny∈Y �(x, y) and
the minimum is assumed for y = x̂ and, if H(x) < ∞, the minimum is not assumed for any
other strategy.

It is technically convenient to allow complexity and entropy to take negative values, but
for many natural examples, these quantities are non-negative, just as is redundancy.

We shall take a game theoretical view and are thus led to consider the maximin-value based
on complexity, hence Axiom 1 points directly to a general maximum entropy principle.

For the next axiom it is convenient to introduce the set M1+(X) of probability distributions
over X , typically identified by the set α = (αx )x∈X of point probabilities. The set MOL(X)

of molecular measures is the set of α ∈ M1+(X) for which the support {x |αx > 0} is finite.

Axiom 2 (affinity) The strategy set X is convex and � is affine in its first variable: For y ∈ Y ,
and α ∈ MOL(X),

�

(
∑

x∈X

αx x, y

)
=

∑

x∈X

αx�(x, y). (6)

Sometimes we only need a weaker axiom with equality in (6) replaced by the inequality
“≥”, corresponding to a condition of concavity.
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For the present publication, we only point to two representative examples. Further exam-
ples will be presented elsewhere.

Example 1 Let A be a discrete set, either finite or countably infinite, and put X = M1+(A).
Further, let Y = K (A), the set of (idealized) code length functions over A, i.e. the set of
functions y = (yi )i∈A for which Kraft’s equality

∑

i∈A

e−yi = 1 (7)

holds. Let the response y = x̂ be given by yi = ln 1
xi

for i ∈ A. With the definitions

�(x, y) =
∑

i∈A

xi yi ,

H(x) =
∑

i∈A

xi ln
1

xi
and

D(x, y) =
∑

i∈A

xi (yi + ln xi ),

we obtain a key example related to information theory, possibly presented in a slightly unfa-
miliar form, e.g. with response different from the identity (compare with (1) and (2)). The
validity of Axioms 1 and 2 is readily established and well-known; as for the fundamental
inequality, it depends on the log-sum inequality cf. e.g. [3,24].

Example 2 Let X = Y be a real Hilbert space and take as response the identity map on X .
Let y0 be a point in Y (the “prior”) and define (�, H, D) by

�(x, y) = ‖x − y‖2 − ‖x − y0‖2, (8)

H(x) = −‖x − y0‖2, (9)

D(x, y) = ‖x − y‖2. (10)

The easy verification of Axioms 1 and 2 is left to the reader.

Useful concavity- and convexity results can be derived from the two first axioms. The
results are connected with yet another key quantity known from information theory. Con-
sider a convex combination x = ∑

x∈X αx x determined by the molecular measure α. Define
the associated information transmission rate by

I(α) =
∑

x∈X

αx D(x, x̂). (11)

Clearly, I(α) = 0 if and only if all x’s with αx > 0 are equivalent. The idea behind the
definition is that the response x � x̂ represents communication from Nature to Observer
with x as the message sent and x̂ as the message received. If Nature selects the message to be
sent according to some distribution determined by the weights αx and if Observer finds that
x best represents what he has to be prepared for, he chooses the strategy x̂ . Nature actually
sends an x ∈ X with weight αx and this represents a kind of “surprisal” to Observer, mea-
sured by D(x, x̂). The greater the surprisal, the better can Observer distinguish between the
possible messages sent by Nature. Taking the average as in (11) we arrive at the (average)
information per communicated message, hence this can be interpreted as the information
rate which Observer obtains from his choice of strategy.

Based only on Axioms 1 and 2 we obtain some important identities:
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Theorem 1 (basic identities)

(i) Let x = ∑
x∈X αx x be a convex combination of elements in X corresponding to

α ∈ MOL(X). Then

H

(
∑

x∈X

αx x

)
=

∑

x∈X

αx H(x) + I(α). (12)

(ii) With notation as in (i), assume that H(x) < ∞ and let y ∈ Y . Then

∑

x∈X

αx D(x, y) = D

(
∑

x∈X

αx x, y

)
+ I(α). (13)

(iii) For elements α1, . . . , αm in MOL(X) with barycentres x1 . . . , xm, and for any mixture
α = ∑m

1 wkαk with a barycentre x of finite entropy, the following identity holds:

I

(
m∑

k=1

wkαk

)
=

m∑

k=1

wk I(αk) +
m∑

k=1

wk D(xk, x̂). (14)

Proof (adapted from [24]). By the linking identity, the right-hand side of (12) may be written
as

∑
αx�(x, x̂) which by affinity equals �(x, x̂), the left-hand side of (12).

Adding
∑

αx D(x, y) to both sides of (12), applying linking and subsequently affinity we
conclude that

H(x) +
∑

αx D(x, y) =
∑

αx�(x, y) + I(α)

= �(x, y) + I(α)

= H(x) + D(x, y) + I(α).

Subtracting H(x), (13) follows.
As to (14), this identity can be derived by similar manipulations as above. Or else one

may note the great similarity with (12), introduce a new information triple by a process of
randomization and then derive (14) as a corollary to (12). Details are left to the reader. ��

We may conceive the left hand side of (13) as an attempt to calculate I(α). Then the
equation says that this is in error, as it underestimates I(α) by the “compensation term”
D(x, y). For this reason, (13) is referred to as the compensation identity. Note also that in
case D is finite, the compensation identity amounts to the independence of y of the expression∑

αx D(x, y) − D(
∑

αx x, y).
From the theorem we obtain the following concavity-and convexity relations:

H

(
∑

x∈X

αx x

)
≥

∑

x∈X

αk H(x), (15)

D

(
∑

x∈X

αx x, y

)
≤

∑

x∈X

αx D(x, y), (16)

I

(
m∑

k=1

wkαk

)
≥

m∑

k=1

wk I(αk). (17)

For the discussion of equalities in these inequalities, recall that I(α) = 0 requires that x̂ be
independent of x for all x with αx > 0.
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We note that whereas the identities (12), (13) and (14) require the full strength of Axiom 2,
the inequality (15) only requires that � is concave in its first variable, hence only requires
the weak form of Axiom 2.

3 Two axioms involving topology

For the further study of information triples (�, H, D) we introduce topological axioms which
focus on D, redundancy.

Axiom 3 (semi-continuity) The strategy set X is a topological space, X = (X, τ ), for which
the algebraic operations on X are continuous. Furthermore, for each (x0, y0) ∈ X × Y , the
two maps x � D(x, y0) and x � D(x0, x̂) are τ -lower semi-continuous.

The topology τ , called the reference topology, will usually be a “nice” topology, espe-
cially Hausdorff so that one can distinguish topologically between the strategies in X (if the
response is not injective one cannot use this map to distinguish). We shall only need sequential
notions of convergence. With xn → x as notation for convergence in τ , the semi-continuity
requirements in Axiom 3 thus amount to the requirements

D(x, y0) ≤ lim inf
n→∞ D(xn, y0), (18)

D(x0, x̂) ≤ lim inf
n→∞ D(x0, x̂n) (19)

whenever xn → x and (x0, y0) ∈ X × Y .
Our last axiom depends on the notion of a D-Cauchy sequence, a sequence (xn)n≥1 of

strategies in X such that

lim
n,m→∞ D

(
xn, x̂n,m

) = 0 where xn,m = 1

2
xn + 1

2
xm . (20)

Axiom 4 (weak completeness) Every D-Cauchy sequence has a subsequence which con-
verges in the reference topology.

For instance, Axiom 4 is satisfied if (X, τ ) is sequentially compact.
In addition to convergence in the reference topology, we shall also consider an intrinsic

notion of convergence, again only paying attention to sequences: A sequence (xn) in X is
said to converge in redundancy to x or to converge in divergence to x (whatever appears most
natural in the situation considered) if D(xn, x̂) → 0. For this we use the notation xn � x .
In [10] one finds some of the technical intricacies of convergence in divergence and the
topology one may associate with it (when the response is injective).

Examples 1 and 2 satisfy Axioms 3 and 4 with the topology of pointwise convergence as
reference topology for Example 1 and the norm topology as reference topology for Exam-
ple 2. The fact that Example 1 satisfies Axiom 4, follows from Pinsker’s inequality (for which
see e.g. [3,24]).

Let us collect some simple results on convergence.

Proposition 1

(i) Every sequence which converges in redundancy is a D-Cauchy sequence, hence con-
tains a subsequence which converges in the reference topology.

(ii) For a sequence which converges in redundancy as well as in the reference topology,
the two limit strategies are equivalent.
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(iii) If the response is injective, then convergence in divergence implies convergence in the
reference topology.

Proof To prove (i), assume that xn � x . Then (xn) must be a D-Cauchy sequence as follows
from the compensation identity (13) applied to the convex combination 1

2 xn + 1
2 xm with

y = x̂ . Then apply Axiom 4.
As to (ii), assume that xn � x and that xn → x ′. Then D(x ′, x̂) ≤ lim inf D(xn, x̂) = 0

by Axiom 3 and Axiom 1 then shows that x ′ ≡ x .
Finally, to prove (iii), assume that the response is injective and consider a sequence which

converges in divergence, say xn � x . By (i), for some x0 ∈ X and some subsequence (xnk ),
xnk → x0. By (ii) applied to the subsequence (xnk ), it follows that x0 ≡ x , hence x0 = x
by injectivity of the response. Applying this argument to subsequences of (xn), we find that
every such subsequence contains a further subsequence which converges to x . As the notion
of convergence here involved is topological, we conclude that xn → x . ��

Regarding the last property, one may note that for the implication xn � x ⇒ xn → x
to hold generally, the response must be injective if only the reference topology satisfies
some weak separation axiom—Hausdorff or even weaker (consider sequences x ′, x ′, · · ·
with x ′ ≡ x).

4 Information triples and games

Consider an information triple I = (�, H, D) related to the strategy sets X and Y and the
response x � x̂ . We shall study two-person zero-sum games with � as objective function,
Observer as minimizer and Nature as optimizer, but with the important restriction that Nature
has to choose a strategy from a certain non-empty subset X0 of X . This set is the preparation
of the game and strategies in X0 are consistent strategies. The game is denoted γ (X0).

The values of the game are defined as usual, cf. e.g. [1]. For Nature, the value is

sup
x∈X0

inf
y∈Y

�(x, y)

which we recognize as the maximum entropy value, denoted by Hmax(X0) (or just Hmax):

Hmax(X0) = sup
x∈X0

H(x). (21)

As for Observer, the value is denoted Rmin(X0) (or just Rmin):

Rmin(X0) = inf
y∈Y

sup
x∈X0

�(x, y) (22)

which may be conceived as minimal risk. For a specific Observer strategy y, the associated
risk is given by

R(y) = sup
x∈X0

�(x, y). (23)

By the minimax inequality, Hmax ≤ Rmin. The game is in equilibrium if Hmax = Rmin <

∞.
A strategy x is an optimal strategy for Nature in the game γ (X0), or a MaxEnt-strategy, if

it is consistent and H(x) = Hmax. A sequence (xn) of consistent strategies is asymptotically
optimal if limn→∞ H(xn) = Hmax. A strategy x ∈ X (note, not necessarily consistent) is
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an Hmax-attractor if xn � x for every asymptotically optimal sequence (xn). A strategy
y ∈ Y is an optimal strategy for Observer, or a Rmin-strategy, if R(y) = Rmin(X0). A pair
(x∗, y∗) ∈ X0 × Y is an optimal pair, or a (MaxEnt,Rmin)-pair, if x∗ is a MaxEnt-strategy
and y∗ a Rmin-strategy.

The main result can now be formulated:

Theorem 2 If X0 is convex and Hmax(X0) < ∞, then Observer has a unique optimal strategy
y∗ and, regarding Nature, an Hmax-attractor x∗ exists and y∗ = x̂∗. All Hmax-attractors are
equivalent. Furthermore, the game is in equilibrium and for x ∈ X0 and y ∈ Y the following
inequalities (stronger than the trivial inequalities H(x) ≤ Hmax(X0) and Rmin(X0) ≤ R(y))
hold:

H(x) + D(x, y∗) ≤ Hmax(X0), (24)

Rmin(X0) + D(x∗, y) ≤ R(y). (25)

Proof (modeled after [23])
Let (xn) be an asymptotically optimal sequence. Assume, as we may, that the sequence

(H(xn))n≥1 converges “fast” to Hmax in the sense that

lim
n→∞ n (Hmax − H(xn)) = 0. (26)

This information will be used later. For now, we put xn,m = 1
2 xn + 1

2 xm and yn,m = x̂n,m

and use (12) and convexity of X0 to find that

Hmax ≥ H(xn,m) = 1

2
H(xn) + 1

2
H(xm) + 1

2
D(xn, yn,m) + 1

2
D(xm, yn,m).

From this we conclude that (xn) is a D-Cauchy sequence. Then, by Axiom 4, there exists a
subsequence (xnk )k≥1 and an element x∗ ∈ X such that xnk → x∗ as k → ∞.

For the next part of the proof we consider any consistent strategy x and put ξk = (1 −
1

nk
)xnk + 1

nk
x . By continuity of the algebraic operations, ξk → x∗. Put ηk = ξ̂k . For each k,

Hmax ≥ H(ξk) ≥
(

1 − 1

nk

)
H(xnk ) + 1

nk
H(x) + 1

nk
D(x, ηk)

and it follows that

H(x) + D(x, ηk) ≤ nk
(
Hmax − H(xnk )

) + H(xnk ).

By (26) and (19) applied to ξk → x∗ we conclude that H(x) + D(x, y∗) ≤ Hmax, i.e.
�(x, y∗) ≤ Hmax. As this holds for every consistent strategy, R(y∗) ≤ Hmax. By the minimax
inequality, the opposite inequality also holds. Thus, y∗ is an optimal strategy for Observer and
the game is in equilibrium. As we also established (24)—equivalent with R(y∗) ≤ Hmax—it
follows that any asymptotically optimal sequence converges in divergence to x∗. Thus x∗ is
indeed an Hmax-attractor. Clearly, any other Hmax-attractor must be equivalent to x∗.

In order to establish (25), consider any y ∈ Y and exploit again the asymptotically optimal
sequence (xn) which we started out with. Now we use (18), and observe that

R(y) = sup
x∈X0

�(x, y) ≥ lim inf
n→∞ �(xn, y) = lim inf

n→∞ (H(xn) + D(xn, y))

≥ Hmax + D(x∗, y) = Rmin + D(x∗, y).

This establishes (25) and also implies uniqueness of y∗. Indeed, from (25) we conclude
that if R(y) = Rmin for some y ∈ Y , then D(x∗, y) = 0 and y = x̂∗ = y∗ follows from
Axiom 1. ��
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Though all four axioms are in play for this result, we note that Axiom 2 is only needed in
the weaker form with concavity instead of affinity.

Corollary 1 Let co(X0) be the convex hull of X0. Then, a necessary and sufficient condi-
tion that γ (X0) is in equilibrium, is that Hmax(X0) < ∞ and that maximum entropy is not
increased by taking mixtures in the sense that

Hmax(co(X0)) = Hmax(X0). (27)

Proof Sufficiency follows by Theorem 2 since, by Axiom 2, Rmin(co(X0)) = Rmin(X0).
This equation is also behind the proof of necessity. Indeed, if γ (X0) is in equilibrium, then

H(co(X0)) ≤ Rmin(co(X0)) = Rmin(X0) = Hmax(X0)

and (27) follows. ��

Note that this proof uses the full strength of Axiom 2.
The MaxEnt-strategy need not exist, even in very simple models ([13,23]). It is unique if

the response is injective, but otherwise need not be so. Using the reasoning from the proof
of Theorem 2 we realize that a MaxEnt-strategy of a convex preparation with Hmax < ∞ is
also an Hmax-attractor.

Results which imply the existence of a (or the) MaxEnt-strategy may be obtained from
game theory, especially from considerations involving the notion of Nash equilibrium. Thus,
if, for (x∗, y∗) ∈ (X0, Y ), the saddle value inequalities hold, i.e.

�(x, y∗) ≤ �(x∗, y∗) ≤ �(x∗, y) for all (x, y) ∈ X0 × Y (28)

and if �(x∗, y∗) < ∞, then γ (X0) is in equilibrium with (x∗, y∗) as (MaxEnt,Rmin)-pair.
With our special assumptions, we see that from (28) and finiteness of �(x∗, y∗) it follows
that y∗ is adapted to x∗ (use (28) with y = x̂∗) and then, the right-hand inequality of (28) is
automatic. This points to the essential importance of the first half of (28):

�(x, y∗) ≤ �(x∗, y∗) for all x ∈ X0. (29)

The discussion above contains the key steps to the following result:

Theorem 3 Consider the game γ (X0). Let x∗ be consistent and y∗ adapted to x∗. Then
a necessary and sufficient condition that γ (X0) is in equilibrium with (x∗, y∗) as a (Max-
Ent,Rmin)-pair is that H(x∗) < ∞ and (29) hold.

Note that (29) is nothing but the inequality (24), except that for Theorem 3 we must assume
that x∗ is consistent, whereas in Theorem 2 a main point is that we deal with strategies x∗
which need not be so.

Theorem 3 has important corollaries which often lead to the determination of MaxEnt (and
Rmin-) distributions. Here we mention one such result. For a single preparation X0, we say
that y ∈ Y is robust if there exists a finite constant ρ = ρ(X0), the level of robustness, such
that �(x, y) = ρ for every consistent strategy. The set of robust strategies is the exponential
family associated with X0. We then obtain the following corollary to Theorem 3:

Corollary 2 Let X0 be a preparation, assume that x∗ is consistent and y∗ = x̂∗ robust. Then
(x∗, x̂∗) is a (MaxEnt, Rmin)-pair for γ (X0).
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5 Discussion

5.1 Information before probability

In 1983 Kolmogorov stated that “Information theory must precede probability theory and
not be based on it” The present research may be seen as an attempt to go some way in this
direction and as such is in line with ongoing tendencies, cf. Shafer and Vovk [20] and also
watch out for Harremoës [11]. For the cited works, just as for the present research, game
theoretical considerations occupy a central position.

5.2 The choice of axioms

The axioms have been chosen as a balance between generality and a wish to make them
acceptable on intuitive grounds and smooth to work with. The key testing ground for the
choice was that a result like Theorem 2 should be easy to state and prove, and yet general
enough to open up for applications in diverse directions.

5.3 Notions of convergence or topological notions?

As indicated, a sequential notion of convergence for the reference structure would suffice.
This refinement may be needed for some continuous models where notions such as conver-
gence almost everywhere are appropriate. Recently, it was discovered in Harremoës [9], cf.
also [10], that for classical information theory convergence in divergence is in fact a topo-
logical notion. This is true quite generally for injective responses x � x̂ as one can easily
verify the conditions for a sequential notion of convergence to be topological. However, the
resulting topology is quite intricate (as are related topologies, cf. [10]), but may come to play
an important role for the more subtle points of certain optimization problems.

5.4 The compensation identity

Further work on the axioms will reveal the significance of the identity (13). Apparently, it
first appeared in [22]. It is also of significance for quantum information theory and is there
called Donalds identity, cf. [6].

5.5 Complexity, entropy or divergence as the basis?

Complexity is the most dominant notion in our axiomatization. From this, notions of entropy
and divergence can be derived. It turns out that the presently popular approach with a focus
on entropy which goes back to Bregman, cf. [2], can also be handled based on our axioms.
Relevant recent works include [4,18,19,27].

As hinted at very briefly, one can also put emphasis on divergence. Thus all three of com-
plexity, entropy and divergence can be put in the central position. We find that conceptually
as well as on theoretical grounds, it is advantageous to emphasize complexity as this quan-
tity has the simplest interpretation. However, one should not consider this quantity alone. In
[16] we have an early contribution with focus on complexity, there termed inaccuracy, and
intended mainly for applications to statistics.

123



J Glob Optim (2009) 43:553–564 563

5.6 Further work

There are several possibilities for expanding on the axiomatics. Some are indicated in [12],
others concern games in networks, the non-commutative case (the quantum case), introducing
geometry, investigating representation theorems etc. Other possibilities concern the discus-
sion of optimization- and duality results from mathematical analysis which did not find a
place in this study.
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